
ABSTRACT
The identification of targets and biomarkers and development of therapeutics for 
nonalcoholic fatty liver disease (NAFLD) may be accelerated by the use of well-
characterized primary cell and tissue reagents, as well as improved in vitro 
human cell-based disease models, including three-dimensional (3D) bioprinted 
liver tissue. The characteristics of donors from which the cells are isolated, and 
especially their stage on the NAFLD continuum, are likely to influence the 
resulting performance in two-dimensional (2D) and 3D models. Evaluation of 
individual cell type characteristics, and their performance when combined in a 
tissue coculture model, could enable development of in vitro models more 
representative of specific patient populations and disease phenotypes. 
RNA sequencing (RNA-seq) was performed on (5) non-diseased and (5) 
NAFLD/NASH liver tissues with NAFLD Activity Score (NAS) of 3 or more, 
revealing clear separation of non-diseased vs. NAFLD/NASH tissues and 
differential expression of fibrosis related genes. Histological analyses performed 
on tissue microarrays revealed consistent altered distribution patterns of hepatic 
stellate cells (HSC), with differential activation of HSC. Hepatocytes and non-
parenchymal cells (NPC) (HSC, endothelial cells, and Kupffer cells), were isolated 
from non-diseased donors and from donors with NAS of 3 or more. The isolated 
cells were characterized with respect to viability, growth kinetics, cytokine 
production, and phenotype. 3D bioprinted liver tissue was generated using either 
NPCs isolated from diseased donors combined with non-diseased hepatocytes, or 
hepatocytes isolated from diseased donors combined with non-diseased NPCs. 
3D bioprinted liver tissue generated using NPCs from a diseased donor exhibited 
accelerated collagen deposition (by trichrome stain) in comparison to bioprinted 
liver tissue generated with non-diseased tissue donors. Tissue generated using 
hepatocytes from a diseased donor exhibited steatosis induction.
Characteristics of the tissue of origin for cells used for in vitro models, including 
disease status, influence the performance of the cells and the utility of the 
resulting model. Thus, characterization of cell donors could enable development 
of in vitro models more representative of specific patient populations and 
disease phenotypes. 
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METHODS

CONCLUSIONS

Non-transplantable human livers were obtained with consent for research 
through Organ Procurement Organizations within the United States. 
All liver tissues were scored with respect to NAFLD/NASH and fibrosis by a 
pathologist1,2. 77 livers were characterized, covering a spectrum of healthy to 
diseased:

Whole tissues were dissociated using established methodologies and primary 
liver cell types were isolated as follows:

Characterization of liver tissues and primary human cells from non-diseased and NAFLD/NASH donors

Hepatocytes
Liver Endothelial Cells
Hepatic Stellate Cells

Kupffer Cells 

Snap-frozen Tissue
FFPE Tissue Blocks
FFPE Tissue Slides

Tissue Array

RNA-seq analysis reveals upregulation of NASH-associated genes in NASH-origin human liver tissues

A pilot RNA-seq study was conducted on 
NAFLD/NASH-origin whole liver tissue and non-
diseased whole liver tissue, to determine whether 
there was clear differentiation of gene expression 
patterns in NAFLD/NASH samples. A total of 785 
genes were differentially expressed between 
NAFLD/NASH and non-diseased liver tissues. Key 
target genes associated with NAFLD/NASH and 
fibrosis were examined within the data set and 
demonstrated to be significantly upregulated in 
NAFLD/NASH-associated tissues (Figure 2).

RESULTS

Figure 1:  Expression of genes known to be 
associated with NAFLD/NASH from RNA-
seq pilot data. Smooth Muscle Actin 
(ACTA2), Collagens (Col1A1, Col4A1, 
Col5A1), Elastin (ELN), Integrins (INTGA5), 
Matrix Metallo-proteinases (MMP2, 
MMP14), Platelet Derived Growth Factor 
(PDGFA), Lysyl Oxidase (LOXL2), 
Transforming Growth Factor Beta (TGFβ1, 
TGFβ2) and Tissue Inhibitors of 
Metalloproteinases (TIMP2, TIMP3). 

Figure 2: Figure Formalin-fixed, paraffin-embedded human liver tissue arrays were probed with antibodies and in situ hybridization probes. Representative images are shown from non-diseased (NAS 0-1) and 
NAFLD/NASH (NAS 3+) specimens.  A: Immunostaining for CK18 (red). Cell-membrane localization (blue arrows), cytoplasmic localization (yellow arrows), and peripheral localization due to displacement by lipid 
globules (white arrows).  B: In situ hybridization with probes for αSMA (red) and Reelin (blue) (Advanced Cell Diagnostics, Inc.).  C: Immunostaining for CD68 (red) and αSMA (green). D: Immunostaining for Collagen 
1 (red) and for αSMA (green). Compared to non-diseased tissues, NASH-origin liver tissues were characterized by the presence of hepatocytes with disorganized CK18 expression, including increased presence in 
cytoplasm and disruption of intercellular / cell membrane localization (panel A, white and yellow arrows). In non-diseased tissues, αSMA gene expression was limited to vascular structures, and reelin-expressing 
HSC were distributed relatively uniformly throughout the lobule along the sinusoids (panel B). In contrast, the NASH-origin tissues exhibited widespread presence of αSMA cells throughout the tissue, with 
occasional co-expression of αSMA and Reelin (panel B). Reelin+ HSC were infrequently associated with lipid-laden hepatocytes and the αSMA+ cells were frequently associated with the developing bands of fibrosis 
throughout the lobule, as was the expression of Collagen 1 (panels B-D). CD68+ Kupffer Cells were present with slightly greater frequency in NASH-origin tissues and could be found dispersed throughout the 
lobules as well as associated with developing fibrosis (panel C). 
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Figure 3:  3D human tissue development using the NovoGen Bioprinter® Platform. Cells reside in heterogeneous and 
architecturally structured 3D environments in vivo. Using the proprietary NovoGen Bioprinter® Platform, Organovo builds 3D 
tissues through automated, spatially-controlled cellular deposition to better recapitulate native tissue structure and function.

Bioprinting with Disease-origin Cells

BioinkCells Bioprint 3D Tissue Culture

Figure 4: 3D human tissue bioprinted with diseased donor nonparenchymal cells. Hepatocytes (HC) from a non-diseased donor 
were bioprinted with Liver Endothelial Cells (LEC), Kupffer Cells (KC) and Hepatic Stellate Cells (HSC) from a diseased donor (NAS 
3-4). Trichrome staining reveals that tissues bioprinted with diseased donor nonparenchymal cells appear more fibrotic after 2 
weeks in culture as compared to tissue bioprinted using normal donor cells (inset). 

Figure 5: 3D human tissue bioprinted with diseased donor hepatocytes. Hepatocytes from a non-diseased (NAS 0) or diseased 
donor (NAS 3) were bioprinted with non-diseased liver endothelial cells and hepatic stellate cells and cultured in standard control 
media or high sugar / free fatty acid media for 2 weeks. Immunofluorescence staining for perilipin 2 (PLIN2), a marker on lipid 
vesicles, shows an increase in the presence of high sugar /  free fatty acid media in tissues with non-diseased hepatocytes.  
Staining also reveals that tissues bioprinted with diseased donor hepatocytes appear more steatotic in control media as 
compared to tissue bioprinted using non-diseased donor cells.

Hepatocytes Kupffer Cells Hepatic Stellate Cells Liver Endothelial Cells

Isolation Method
Perfusion with enzymatic 
digestion + percoll
gradient

Perfusion with enzymatic 
digestion + positive 
selection of CD11b 
population

Perfusion with enzymatic 
digestion + Nycodenz
gradient

Perfusion with enzymatic 
digestion + elutriation*

*Some liver endothelial cells were isolated using positive immunoselection with CD146/CD31
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Bioprinting with Disease-origin Hepatocytes
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Characteristics of the tissue of origin for cells used to build in vitro models, including 
disease status, influence the phenotype of the cells and the utility of the resulting 
model.
• NASH/NAFLD donors exhibit differential expression of key target genes associated 

with NAFLD/NASH and fibrosis at the mRNA and protein level.
• 3D bioprinted liver tissue generated using NPCs from a diseased donor exhibited 

accelerated collagen deposition.
• Tissue generated using hepatocytes from a diseased donor exhibited more basal 

and inducible steatosis induction.
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